3.2.44 \(\int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}} \, dx\) [144]

Optimal. Leaf size=23 \[ \text {Int}\left (\frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}},x\right ) \]

[Out]

Unintegrable((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(a + b*ArcCsch[c*x])/Sqrt[d + e*x^2],x]

[Out]

Defer[Int][(a + b*ArcCsch[c*x])/Sqrt[d + e*x^2], x]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}} \, dx &=\int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.70, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a+b \text {csch}^{-1}(c x)}{\sqrt {d+e x^2}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(a + b*ArcCsch[c*x])/Sqrt[d + e*x^2],x]

[Out]

Integrate[(a + b*ArcCsch[c*x])/Sqrt[d + e*x^2], x]

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 0, normalized size = 0.00 \[\int \frac {a +b \,\mathrm {arccsch}\left (c x \right )}{\sqrt {e \,x^{2}+d}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

[Out]

int((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [A]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

a*arcsinh(x*e^(1/2)/sqrt(d))*e^(-1/2) + b*integrate(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/sqrt(x^2*e + d), x)

________________________________________________________________________________________

Fricas [A]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/sqrt(x^2*e + d), x)

________________________________________________________________________________________

Sympy [A]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{\sqrt {d + e x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/(e*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acsch(c*x))/sqrt(d + e*x**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/sqrt(e*x^2 + d), x)

________________________________________________________________________________________

Mupad [A]
time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{\sqrt {e\,x^2+d}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(d + e*x^2)^(1/2),x)

[Out]

int((a + b*asinh(1/(c*x)))/(d + e*x^2)^(1/2), x)

________________________________________________________________________________________